目录

memgraph 本地学习环境部署

开源 图数据库,专为 实时流数据构建,兼容 Neo4j

使用授权是 the Business Source License 1.1 (BSL)

企业版是 额外提供权限管理功能,详细见官网

注意:

memgraph 3.0 版本前,Memgraph不支持跨多个物理位置运行和存储数据 Memgraph 3.0 将启用水平扩容。查看计划 Memgraph 3.0 on GitHub

  • 由于 图数据库 是作为 数据仓库 部分,图数据库本身数据很大,一般用于热点数据的计算,不少大厂使用 分布式 k-v 库来计算图数据,所以不太需要长期持久化,所以分布式存储数据的需求不太强烈
    • 更多的情况,是动态的启动复数图数据库,挂到内存中,作为高速访问的服务
    • 多点部署后,对应带来的分布式一致性问题,Global ACID 问题需要解决,这些需要提前做好预案
  • 运行 Memgraph 的 Docker容器架构

使用三个Docker映像来运行Memgraph

  • memgraph-platform - installs the whole Memgraph Platform, which includes

    • MemgraphDB: the graph database
    • mgconsole: a command-line interface for running queries
    • Memgraph Lab: 用于运行查询和可视化图形数据的可视化用户交互界面
    • MAGE: 图形算法和自定义Cypher程序的开源库
  • memgraph-mage - installs MemgraphDB, mgconsole and MAGE

  • memgraph - installs MemgraphDB and mgconsole

  • memgraph 镜像都很大,需要提前获取

bash

$ docker pull memgraph/memgraph-platform:2.10.0-memgraph2.10.0-lab2.8.0-mage1.9
$ docker pull memgraph/memgraph-mage:1.9-memgraph-2.10.0
# optional
$ docker pull memgraph/memgraph:2.10.0
  • 创建文件夹 memgraph-docker, 进入这个文件夹

  • 创建文件 file .env 内容为

env

# 用户名称
ENV_MEMGRAPH_MAGE_USER="foo"
# 这里使用 `openssl rand -hex 16` 来初始化一个密码
ENV_MEMGRAPH_MAGE_PWD=""
  • 编写配置 docker-compose.yml 文件

yml

# copy right by 2023 sinlovgmpp@gmail.com
# license under MIT
# more info see https://docs.docker.com/compose/compose-file/
version: '3.8' # https://docs.docker.com/compose/compose-file/compose-versioning/
services:
  memgraph-platform: # https://hub.docker.com/r/memgraph/memgraph-platform
    container_name: "memgraph-platform"
    image: memgraph/memgraph-platform:2.10.0-memgraph2.10.0-lab2.8.0-mage1.9 # https://hub.docker.com/r/memgraph/memgraph-platform/tags
    ports:
      - 13000:3000 # connection to the Memgraph Lab application when running Memgraph Platform
    volumes:
      # bind mounts to transfer durability files such as snapshot or wal files inside the container to restore data, or CSV files
      - './data/memgraph-platform/data:/usr/lib/memgraph/data'
      #  directory containing log files
      - './data/memgraph-platform/log/memgraph:/var/log/memgraph'
      # directory containing data, enables data persistency
      - './data/memgraph-platform/lib/memgraph:/var/lib/memgraph'
      # directory containing the configuration file
      # The configuration file can usually be found at /etc/memgraph/_data/memgraph.conf
      # - './data/memgraph-platform/etc/memgraph:/etc/memgraph'
    environment:
      # set the log level to WARNING Allowed values: TRACE, DEBUG, INFO, WARNING, ERROR, CRITICAL
      # memory limit in MiB
      MEMGRAPH: --memory-limit=50 --log-level=TRACE
    restart: always # always on-failure:3 or unless-stopped default "no"
    logging:
      driver: "json-file"
      options:
        max-size: "2m"
  memgraph-mage: # https://hub.docker.com/r/memgraph/memgraph-mage
    container_name: 'memgraph-mage'
    image: memgraph/memgraph-mage:1.9-memgraph-2.10.0 # https://hub.docker.com/r/memgraph/memgraph-mage/tags
    user: root
    env_file: .env
    ports:
      - 17444:7444 # connection to fetch log files from Memgraph Lab, version 2.+ and new
      - 17687:7687 # connection to the database instance, the Bolt protocol uses this port by default
    volumes:
      # bind mounts to transfer durability files such as snapshot or wal files inside the container to restore data, or CSV files
      - './data/memgraph-mage/data:/usr/lib/memgraph/data'
      #  directory containing log files
      - './data/memgraph-mage/log/memgraph:/var/log/memgraph'
      # directory containing data, enables data persistency
      - './data/memgraph-mage/lib/memgraph:/var/lib/memgraph'
      # directory containing the configuration file
      # The configuration file can usually be found at /etc/memgraph/_data/memgraph.conf
      # - './data/memgraph-mage/etc/memgraph:/etc/memgraph'
    environment:
      # set the log level to WARNING Allowed values: TRACE, DEBUG, INFO, WARNING, ERROR, CRITICAL
      # memory limit in MiB
      MEMGRAPH: --memory-limit=50 --log-level=WARNING
      MEMGRAPH_USER: ${ENV_MEMGRAPH_MAGE_USER}
      MEMGRAPH_PASSWORD: ${ENV_MEMGRAPH_MAGE_PWD}
    restart: on-failure:3  # always on-failure:3 or unless-stopped default "no"
    logging:
      driver: "json-file"
      options:
        max-size: "2m"

配置好后,目录结构为

bash

➜ tree -L 2 -a
.
├── .env
└── docker-compose.yml
  • 启动数据库及工具

bash

# 启动这组服务
$ docker-compose up -d --remove-orphans
# 查看这组服务的状态
$ docker-compose ps
# 滚动运行 std 日志
$ docker-compose logs -f
# 关闭这组 app
$ docker-compose down
  • 这里启动了 memgraph-platform 管理服务地址 http://ip:port:13000
  • 点击 左侧 New connection 菜单,使用 Connect Manually to Memgraph 模式连接私有部署数据库
  • memgraph-mage 数据库 连接配置
    • Host ip
    • Port 17687
    • Advanced Settings:
      • Database name: 初次留空
      • Username: <.env file set ENV_MEMGRAPH_MAGE_USER>
      • Password: <.env file set ENV_MEMGRAPH_MAGE_PWD>
      • Monitoring port: 17444

在 memgraph lib 中已经包含了不少例子,点击左下方 LAYOUT 可以方便的切分视图

  • Overview 中包含了测试服务状态的内容 比如 创建

cypher

CREATE (c1:Country {name: 'Belgium'}),
(c2:Country {name: 'Netherlands'})
CREATE (c1)-[r:BORDERS_WITH]->(c2)
RETURN r;
  • 合并

cypher

MERGE (c:Country {name: 'Croatia'})
RETURN c;

图数据库的使用是一个单独的学习过程,这里不再赘述,本地学习环境部署到这里就完成啦